Soft Fast Recovery Diode V_{RRM} =1200V I_F =10A **KD10120FU** Preliminary Specification, Rev 2, May 2012 Die Size: 3.5 x 3.5mm #### **Ultra low losses** Passivation: Silicon Oxide ### Maximum rated values: | Parameter | Symbol | min | max | Unit | |---|------------------|-----|------|------| | Repetitive peak reverse voltage | Vrrm | - | 1200 | V | | Continuous forward current | l _F | - | 10 | Α | | Repetitive peak forward current* | I _{FRM} | ı | 20 | Α | | Nonrepetitive peak surge current (Halfwave, 1 Phase, 50 Hz) | IFSM | - | 200 | А | | Junction temperature | T _{vj} | - | 150 | °C | ^{* -} Limited by $T_{\nu j} \, max$ ### **Diode Characteristics values:** | Parameter | Symbol | Conditions | min | typ | max | Unit | |-------------------------------|------------------|--|-----|-----|-----|------| | Continuous forward voltage | VF | I _F =10A,T _{vj} = 25°C | | 2.2 | 2.4 | V | | Continuous reverse | I _R | $V_R=1200V \frac{T_{vj}= 25^{\circ}C}{T_{vj}= 125^{\circ}C}$ | | | 100 | uA | | current | | $T_{vj} = 125^{\circ}C$ | | 1.5 | | mΑ | | Peak reverse recovery current | I _{RRM} | I _F =10A, V _R =700V, | | 12 | | Α | | Recovered charge | Qrr | dl⊧/dt=200A/uS,
T _{vj} = 25°C | | 0.9 | | μC | | Reverse Recovery Time | t _{rr} | | | 150 | | nS | | Reverse Recovery Time | t _{rr} | I _F =1A, V _R =30V,
dI _F /dt=200A/uS. | | 40 | | nS | - di√dt Rate of change of current through zero crossing - 2. I_{RRM} Peak reverse recovery current - 3. trr Reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current - 4. Q_{rr} Area under curve defined by t_{rr} and I_{RRM} $Q_{rr} = \frac{t_{rr}X I_{RRM}}{2}$ 5. $di_{(rec)M}/dt$ - Peak rate of change of current during t_b portion of t_{rr} ## Mechanical properties: Top metal: **AI** – for Wire Bonding Backside metal: **Ti-Ni-Ag** – for Soldering | DIM | ITEM | μm | |-------------------|-----------|--------------| | Ax
Ay | Die Size | 3500
3500 | | D | Thickness | 350 max | | Scribe Line Width | | 60 |